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A completely unambiguous prescription is presented for extending the equation-of-motion method, in-
cluding pairing, beyond the random-phase approximation. When combined with the idea of a generalized
effective field, this prescription leads to a simple, self-consistent treatment of pairing, lifetime, and renormal-

ization effects in many-body systems.

I. INTRODUCTION

HE essence of the equation-of-motion method
consists of searching for a quantum-mechanical
operator O such that the commutator of © with the
many-body Hamiltonian is proportional to ©. The
proportionality constant is necessarily equal to some
excitation energy of the system. If O is approximated
by a single-particle creation or destruction operator (in
the case of normal systems) or by a linear combination
of two such operators (in the case of superfluid systems
with pairing), then we have the so-called random-phase
approximation. If © is approximated by a linear com-
bination of both single-particle operators and products
of single-particle operators, then we have the extended
random-phase approximation of Suhl and Werthamer.!
One of the difficulties? with this latter approach lies in
the ambiguity in choice of which products of single-
particle operators should be kept in the expansion of 0.
In this paper we propose a scheme for the expansion
of O that is (1) completely unambiguous and well
defined for any many-body system, (2) reasonably easy
to apply, and (3) when combined with Nambu’s idea
of a generalized effective field,® leads to a remarkably
simple treatment of pairing, lifetime, and renormaliza-
tion effects in a self-consistent fashion.

In Sec. IT, we set up the scheme for a many-fermion
system (electrons). In Sec. IIT, we show how the scheme
can be readily generalized to include many-boson sys-
tems, or mixed systems involving both bosons and
fermions. In Sec. IV, we consider the example of a
superconductor with disorder scattering.

II. THEORY

In general, any quantum-mechanical operator © has
a time dependence given by

ih(do/dt) =ih(99/90)+[0,H], (2.1)

where [0,H] is the commutator of © with H, the
Hamiltonian of the system. We wish to look for an ©

such that i#(d0/dt) = 0. 2.2)
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Of course, a trivial example is O=¢~%*. Here, however,
we want an operator that contains no explicit time
dependence. Therefore, we must have

[0,H]=%w0. (2.3)

For the time being, we assume 7w is real and positive.
Let ¥¢ be the exact ground-state wave function
associated with H, i.e.,

HY4=FEg, (2.4)

I, being the ground-state energy. Consider the wave
function ©"¥¢. We have

H(0WWe)=0'HYe+[H,0 Vg
= @TH‘Ilg“’—[@,H]T‘I/G
=(E¢+7iw)0g. 2.5)

Thus 0"W¥g is an exact excited-state wave function, with
excitation energy %w. In a similar fashion, we have

H(0¥q)=(E¢—#w)0¥q. (2.6)

The only way this can be consistent with ¥4 being the
ground state is by having

As we shall see presently, there may be solutions to
Eq. (2.3) where the proportionality constant 7w is
negative. If this is the case, the O¥¢ is an exact excited-

state wave function, with excitation energy | %w| = —%w.
Under such conditions, Eq. (2.7) is replaced by
@T‘I’G =0. (2 8)

An operator which transforms ¥g into an excited-
state wave function is called a quasiparticle creation
operator; the Hermitian conjugate of this operator is
the quasiparticle destruction operator. Having found a
complete set of quasiparticle operators, in the process
having simultaneously determined the corresponding
excitation energies, we can determine Vg from the con-
ditions that each of the quasiparticle destruction
operators, acting on ¥g, gives zero. Once one has deter-
mined ¥g, one can determine the ground-state energy
Ey, and the excited-state wave functions.

Since H is Hermitian, we see that for any O that
exactly satisfies Eq. (2.3), the proportionality constant
must be real (since H has real eigenvalues). In practice,
however, we are going only approximately to satisfy
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1072 ROBERT H.
Eq. (2.3), thereby finding an approximate ©. In such a
case, the corresponding proportionality constant may
be complex. This indicates a finite lifetime to the ap-
proximale exited-state wave function 0'W¢g (if Rew is
positive) or O¥¢ (if Rew is negative). If we write

(2.9)

w=w1—iw2,

w1 and ws being real, then we want w; and ws to have the
same signature. Thus, if w; is positive, then the excited-
state wave function is O"¥¢q and | 0"¥¢| 2 is proportional
to e~292¢, which will damp out with increasing time if
wy is positive. Similarly, if w; is negative, then the
excited-state wave function is 0¥ and |OW¥g|? is
proportional to et?¢?!, which will damp out with in-
creasing time if w; is negative. In either case,

7=(2]w|)!

is the lifetime of the excited state.

The process of finding an O which approximately
satisfies (2.3) leads to a secular equation for w. It may
be necessary to make the replacement

(2.10)

(2.11)

®—> wti1,,
where

ﬂwEn(wl/lw1|)=77 sgnw;, (212)

7 being a positive infinitesimal, in the secular equation.
This ensures that any roots lying near the real axis in
the complex w plane will be in either the second or the
fourth quadrant, in agreement with the discussion of
the previous paragraph. This replacement of w by
w17, will actually need to be done during the process
of evaluating certain integrals involving energy denomi-
nators containing w. In evaluating such integrals, it is
convenient to use the formal relation

li_)r{)l+ (x=in) " 1=0(1/x)Frid(x), (2.13)

where ® denotes “principal part of.”

In the usual second-quantized notation, the many-
electron Hamiltonian A is expressed in terms of the
one-electron creation and destruction operators c,of
and ¢y, ,, obeying the anticommutation relations

[ck'ﬂyck',u’TJ—E— = 5k,k’6v,a’ )
Cck,orchr,oar Jt =Lk, scrr, e ] =0. (2.14)

It will be necessary to take thermal averages of various
products of the ¢’s, in a manner to be described in

detail later. We shall assume that the only nonvanishing
thermal averages are

Nk, e= <CkwTCIca> (2.15)
and

br={c_riCrt). (2.16)

If H commutes with the time-reversal operator, then we
can usually take #x,,=7_x,,=n; to be independent of
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the direction of wave vector k and spin o. The assump-
tion of finite &y is, of course, what leads to the possibility
of pairing.

It is convenient to associate the one-electron creation
and destruction operators in groups or families, such
that the kth group consists of the four operators?

Ty C—kl, c—klf-

Ckty Cikt
Any term of the many-electron Hamiltonian which is
proportional to two or more operators from a given
group is defined as a pairing term. (Note that the pro-
portionality coefficients may also be products of opera-
tors.) We thus can break up our Hamiltonian into two
parts,
H=H0+H1, (217)
where H, is the pairing part of the Hamiltonian (i.e.,
all pairing terms) and H; is the nonpairing part. We
shall consistently make the approximation of replacing
the proportionality coefficients in H, by their thermal
averages, so that H, is bilinear in the operators of each

group.
ceey in )
3 'i2n

Let
11, 12,
gty Ing2y o e

H(i)zH(

be that portion of H; which is proportional to
(c—isfmia® * " Cin) (CinpaCinga * *Cina) -

Here we are using the shorthand notation i=(k,0),
—i=(—k, —c). In general, H(:) will contain (n!)?
terms of Hy. Since H; is nonpairing, no two 4’s in H (%)
can be the same or opposites. In other words, there is one
operator from each of 2z distinct groups of operators.
Now consider @/l the terms of H; composed of operators
from the same set of 2n distinct groups. We can write

Hy=} Hu, (2.18)
1

where Hy; is the terms of H; composed of operators
from the /th set of distinct groups.

In order to express this idea more formally, we define
the permutation operator P(u,») which, when acting on
H(7), exchanges the uth index of the top row with the
vth index of the bottom row, i.e.,

Ty

11, ey Tu—1,

P(up)H (

Tut1, >
Tntly ooy 7:7:+V—1 ) in+m Intvtly oo

11, <y Tu—1, Tatv, Tutl,

L] iﬂ+"—-1: Ty Tndvtly oo

4+ We do 7ot wish to imply that these four operators form the
elements of a group in the mathematical sense of the word.



1 PAIRING IN MANY-BODY SYSTEMS

Next we define the operator Q such that
0=143 P(up)+ 2" P(u1,rr) P(us,vs)
By

BV

+ 22" Pu1p1) P(ua,pe) P(ua,vs)+- - - .

Kok

(2.20)

The prime on the summation indicates that u;>pi—1,
v;>,_1. The expression for Q is understood to terminate
with a series involving a product of # P’s. The total
number of terms in Q is

3 [nl/wl(n—) 2= (20) )2

=0

(2.21)

If we assume that H; conserves momentum and/or
spin, then we have®

Hy=QH(@)+QH'(). (2.22)
Returning to Eq. (2.17), let us replace H by
HIEH0,+H1’, (223)
where
HY=Hy+H,, H/=\NH:—H,). (2.24)

Note that H” becomes H# when A=1. It is convenient to
keep A as a parameter, and set it equal to 1 at the end
of the calculation. The additional Hamiltonian Ho,
which has been added to H, and subtracted from Hy, is
assumed to be a pairing Hamiltonian. Following
Nambu,? the basic idea is to find that pairing Hamil-
tonian H, which most nearly cancels the nonpairing
Hamiltonian H;. Having made the optimum choice for
H,, we assume that H, can be treated as a small per-
turbation. This is the key assumption of this paper.
There are certainly situations where it is a poor assump-
tion, but there are many other cases where it appears
to be an excellent assumption. It will usually turn out
that the optimum choice for H, is non-Hermitian. This
is related to the finite lifetimes of the quasiparticle
excitations.

The operator O is expanded in terms of a set of
operators ¥;,.(e=1, 2;1=0,1,2, ..., N),

N 2
®=Z Z az,a*l,l/z,a , (2.25)
0 a=1

1=

where the a;,,* are arbitrary coefficients. The operators
¥1,4, which will be defined presently, are chosen to have
the property

<E¢l.aa¢l’.a’T]+> =01,000,a’
(Wretr e i)=Y ¥r,e' 1) =0,

5 In case H; conserves neither momentum nor spin, there will be
additional terms coming from the possibility of changing the sign
of one or both of the 4’s being interchanged in each permutation.
Although it does not appear to occur in practice, in principle there
may be additional terms for a sufficiently complicated many-body
interaction which does conserve momentum and/or spin. These
terms are associated with changing the signs of several of the ¢’s
among those involved in a multiple permutation.

(2.26)
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so that they are fermionlike operators. As before, [ , ]+
denotes the anticommutator, and { ) denotes a thermal
average. Because of the fact that we are nof expanding
O in terms of a complele set of operators, it follows that
we can at best solve Eq. (2.3) approximately.

Again following Nambu,? we introduce the matrix
notation

P1
P= ); PT:(PI’I:PZT):
pe
(2.27)
mir M2 mut mal
(o ) )
a1  Ma22 mit Mmoot

An arbitrary M can be expanded in terms of the four
matrices

0 1 01
1'1=< ), i1'2=< ),

10 -1 0

1 0 10
1'3=( ), T4=( >

0 —1 0 1

If P and Q are two column vectors, we define

28)

[ong1le [P1,92:|+>
[p2gde [pogh/’
[pua' e [171,92‘]+)-
[p201' ) [P2e"

Lp ;Q]+E( 00
[p ;Qf]—FE(

If we now define

an Yu
AzE( > , \Isz( > ,
(125 27

then we can rewrite (2.25) as

(2.30)

N
0=3 4,1¥,
=0

(2.31)
and (2.26) as
¥ Tolly) =104,
{L¥; ¥ ]e)=0.
We will also need the notation
(([¥,H]; Yo' l)=K (Vs H). (2.33)

For given [, I/, and H, K is a 2)X2 matrix whose matrix
elements are various thermal averages. If H is
Hermitian, note that [using Eq. (2.35) below ]

K10 H)=K(0',}; H).

(2.32)

(2.34)

Next we turn to the crucial question of defining the
set of operators ¥;. We choose

Ck,t
\I/0= .
Lk,U

(2.35)
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This choice means (at least approximately) that © is
either the destruction operator for a quasiparticle of
momentum 7%k and spin up, or, alternatively, the
creation operator for a quasiparticle of momentum
—7%k and spin down. We define ¥; (/>0) in terms of
H,; appearing in Eq. (2.18); namely,

[\I,O)Hll] =RI\I,I ’ I#0 (2'36)

where R; is a 2)X2 matrix. Note that, because of the
definition of H7y, it follows that Eqs. (2.32) are satisfied
for I's#1, quite independently of the form of R;. Also,
because of (2.14), Egs. (2.32) are satisfied for I=1"=0.
We now choose R; in order that Egs. (2.32) be satisfied
for ’=1£0. Obviously, R;=0 unless the wave vector
k lies in the set {/}. In the notation of Eq. (2.33),
we have

R,=K(0,}; Hy). (2.37)
Note that this can be rewritten
Rz =K(O,l, H1) . (238)

Let Hp be an arbitrary pairing Hamiltonian, treated in
the approximate fashion discussed earlier [ immediately
after Eq. (2.17)7]. It follows that

K(V'; Hp)=0,
Note finally that

£l (2.39)

K(0,0; H1)=0. (2.40)

We next replace H by H’ [as given by Eq. (2.23)] in
our equation of motion, Eq. (2.3), as has already been
discussed. Substitute in the expression for O [Eq.
(2.31)]. Take the anticommutator of the equation with
¥, t, and thermally average. Finally, we make use of
Egs. (2.32) and (2.33) to get

N
2 ALK H') —hwbdi,vre]=0. (2.41)
=0

The work of Roth,? suitably generalized to include
pairing, would formally resemble Eq. (2.41). There is
the following important difference, however: In addition
to the use of a generalized effective field, the present
approach goes beyond that of Roth in presenting a
prescription [ Eq. (2.36)] for choosing an optimum set
of operators ¥, for expanding 0. With the aid of Egs.
(2.23), (2.24), (2.34), (2.38), (2.39), and (2.40), this can
be rewritten more explicitly. For /=0, we have

A [K(0,0; H')—fors]

=N K(0,0; Ha)—\ g;l AR, (2.42)
For I'£0, we have
AVTEE, Y5 He) —heor 4Ry

N
=N Z'TK(ll,l’; Hz) —A Z AZTK(Z,Z'; H1) . (243)
=1
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Since H, will be chosen to make Hy =\(H;—H,) small,
we expect 4;" (I£0) to be much smaller than A4,'. In
particular, we expect A;" (I%0) to be linear in A,
whereas A4,' is independent of A. Thus, the left-hand
side of Eq. (2.43) is linear in A; the right-hand side is
quadratic in \. We thus discard the right-hand side and

solve for A;" (I5£0) in terms of 4,':
At =NGTRFors—K @ HY) T, (2.44)

We now choose H, such that
N
K(0,0; H)) =\ Y, R hora—K(,l; HY)T 'Rt (2.45)
=1
Equations (2.44) and (2.45) imply that the right-hand
side of (2.42) vanishes, or
A [K(0,0; Hy) —#hwrs]=0. (2.46)

Corresponding to Eq. (2.46), we have the secular
equation

det[K(0,0; Hy') —#hwrs]=0. (2.47)
This equation has the form
a—hw c
=0, (2.48)
I d b—hw
the roots of which are
fw=3%(a+b)E[3(a—b)>+cd]'2. (2.49)

(It should be remembered that a, b, ¢, d may be complex
and may be functions of both k and w.) Corresponding
to these two roots, there are two possibilities for 0,
which we designate as O(4) and O(—), respectively. In
either case, if w; (the real part of w) is positive, O is the
destruction operator for a quasiparticle of momentum
#k and spin up. If w; is negative, O is the creation
operator for a quasiparticle of momentum —#k and
spin down. If H commutes with the time-reversal
operator, it will usually turn out that w(—)=—w(+).
This occurs by virtue of (¢-+5) being proportional to w
in Eqs. (2.48) and (2.49). In this case, O(+) is a quasi-
particle destruction operator, ©(—) a quasiparticle
creation operator.®
In general, we want © normalized such that

<[®7®T]+>= 1.

To the accuracy to terms linear in A\, we can approxi-
mate O in this equation by

@=A0T‘I’0,

(2.50)

(2.51)
thereby getting
AUTA():l. (2.52)
6 Even with Hamiltonians not invariant to time-reversal, it
may happen that w(—) = —w(+). An example is a superconductor
with paramagnetic impurity atoms, provided the magnetic moments
of the impurities are randomly oriented. This example will be
discussed briefly in Sec. IV.
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We define the column vector

o(+)
6:(0(_)>, (2.53)
and the square matrix
. [(A)
U =<A0T(—)> s (2.54)

[4o'(+) goes with 0(+); 4of(—) goes with 0(—).]
Equation (2.51) can be rewritten

Yo=U0. (2.55)

If Hy were Hermitian, then U would be a unitary
matrix, but H,, and thus Hy, will not be Hermitian
when there are lifetime effects. For either O(4) or
0(—), we have

(010) = flw)=7""|w|

X/dw’[(w'—wl)z-l-wzz]_l[eﬂh""—{-l]“l, (2.56)

while

(of(+)o(=))=0. (2.57)

If 01> 0, then f(w) is the thermodynamic probability of
occurrence of the quasiparticle excitation. If w; <0, then
1—f(w)=f(—w) is the thermodynamic probability.”
With the aid of Eqs. (2.55)-(2.57), we can evaluate the
thermodynamic averages #x, and b, defined in Eqgs.
(2.15) and (2.16). Writing

fe=flo(£)], (2.58)
we have
ni=|Unl|?foa+|Usn|?f,
now=|Un]*(A=f)+|Un|*(1-f), (2.59)

br=U*Ur1f1+Us*Usaf_.

The form of the matrix K(,/; H,), and thus that of
H, itself, is determined implicitly by Eq. (2.45). Let us
consider what happens when we make certain assump-
tions about the form of R;. First, consider the case
where R; is proportional to a unitary matrix, the pro-
portionality constant being a complex number. Equa-
tion (2.45) is now consistent with the assumption that
K(1,l; Hy) contains no terms proportional to 74 and that
K(l,l; Hy) has every term which is proportional to 74
also proportional to w. But these are just the assump-
tions that lead to ny,,=n_s,—.=#n; and w(—) = —w(+).

7 The quantity f(w) is a weighted average of the Fermi factor
(14-efho)1 the weighting factor associated with frequency o’
being the intensity of the o’ component in the Fourier decomposi-
tion, for £>0, of the function ¢~¢¢, This function contains the time
dependence of the quasiparticle-excited-state wave function
O, if w1>0, or of the complex conjugate of the excited-state
wave function (O¥¢)*, if w1 <0. Such a choice of f(w) ensures that
detailed balancing will hold in any transfer of electrons between
the system and a reservoir of free electrons in thermal equilibrium
(a transfer by tunneling, for example). See L. P. Kadanoff, in
Lectures on the Many-Body Problem, edited by E. R. Caianiello
(Academic Press Inc., New York, 1964), Vol. II, p. 77.
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Secondly, we consider the case where R; is propor-
tional to a real mairixz, the proportionality constant
being a complex number. (A real matrix is one with real
matrix elements.) Equation (2.45) is now consistent
with the assumption that neither K(I,/; Hy) nor
K(l,l; Hy) contains terms proportional to 7. K(1,l; Ho)
containing no terms proportional to 7, means that &
is real.

III. EXTENSION TO MANY-BOSON
AND MIXED SYSTEMS

If we are dealing with a many-boson system rather
than a many-fermion system, we still define the groups
of operators in the same fashion as before. A group
contains the four creation and destruction operators
associated with a single-particle state and the corre-
sponding time-reversed single-particle state. Spin in-
dices are suppressed if the bosons have zero spin. In
this latter case, the k=0 group has only two operator
members, and thus must be treated with special care.
(The possibility of a bose condensation is another reason
for treating the k=0 group with special care.) Any
term of the many-particle Hamiltonian which is pro-
portional to two or more operators from a given group
is defined as a pairing term. The nonpairing part of the
Hamiltonian is broken up into portions Hy;, the latter
being the terms of H; composed of operators from the
Ith set of distinct groups. In case particle number is not
conserved (e.g., phonons), then Egs. (2.19)~(2.22) are
no longer applicable, since H(7) does not necessarily
contain the same number of creation and destruction
operators.

Because of the change in statistics, we must replace
the anticommutators by commutators in Eqs. (2.14),
(2.26), (2.29), (2.32), (2.33), (2.50). This means that 74
should be replaced by 75 in Egs. (2.32) and (2.41)—(2.48)
and in the discussion of the next to last paragraph of
Sec. II. The factor 1 on the right-hand side of Egs.
(2.50) and (2.52) should be replaced by sgnw;. (This
implies that U is not necessarily unitary even in the
absence of lifetime effects.) In addition, the thermo-
dynamic factor f(w) of Eq. (2.56) must be redefined as

J(w)=(sgnwi)w | w,|
X f o/ [(f 1) e e —1T1. (3.1)

If w1>0, then f(w) is the thermodynamic probability of
occurrence of the quasiparticle excitation. If w; <0, then
—14f(w) = f(—w) is the thermodynamic probability.
In the second of Egs. (2.59), the factors (1—f;) and
(1—f2) must be replaced by [sgnwi(+)-+f+] and
[sgnw;(—)- f—], respectively.

The present approach is well suited to a calculation
of the condensate-induced effective attractive inter-
action between helium atoms in superfluid He?, first
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calculated by the writer® using a canonical-transforma-
tion technique. The present scheme is more satisfactory
in that it takes into account lifetime and renormaliza-
tion effects. In treating this problem, it is necessary to
replace the two-body interaction matrix elements by an
equivalent scattering matrix, in the fashion discussed
in Ref. 8.

There are no additional difficulties in principle with
treating many-body systems of interacting bosons and
fermions. There are now groups composed of fermion
operators and groups composed of boson operators. The
pairing Hamiltonian H, and the nonpairing Hamil-
tonian H; are defined just as before. H, is broken up
into portions Hy; as previously, only now the set {/}
may contain both boson groups and fermion groups. One
looks for a set of bosonlike quasiparticle excitations in
the manner described in this section, while simul-
taneously looking for a set of fermionlike quasiparticle
excitations in the manner described in Sec. II. The
self-consistency equations for the two classes of excita-
tions will be coupled—this being the difficulty in
practice.

Physical examples are the interacting electrons and
phonons of a superconducting metal, and the interacting
He? and He* atoms of a superfluid He®-He? solution. It
is generally believed that pairing occurs among the

electrons of the former example and among the He!'

atoms of the latter example. It would be interesting
to investigate the possibility of simultaneous pairing
of the phonons of the former example and the He? atoms
of the latter example. If one ignores the possibility of
phonon pairing, it appears that the present scheme
gives results for the electron-phonon system equivalent
to those obtained from the Green’s-function approach.’

IV. EXAMPLE: SUPERCONDUCTING ALLOYS

We illustrate the application of the formalism of Sec.
II by treating the problem of a dilute superconducting
alloy. Initially we consider the case of nonmagnetic
impurity atoms.!® The pairing part of the many-electron
Hamiltonian is assumed to be the Hamiltonian of the
Bardeen-Cooper-Schrieffer (BCS) theory!!:

Ho=Y ex(citiomtc_rfe_r)
%

—V X cenfeopifopien. (4.1)
BB
The nonpairing part of the Hamiltonian is
=" Vaw—r(cwrlepr~erifepn). (4.2)

k&’

8 R. H. Parmenter, Phys. Rev. 170, 194 (1968).

8 J. R. Schrieffer, Theory of Supercondmthty (W. A. Benja-
min, Inc., New York 1964), Chap. 7

1°D. Markowitz and L. P. Kadanoff Phys. Rev. 131, 563
(1963).

1 J, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).
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Since the scattering is nonmagnetic, the terms citcpt
and c_nfc_r enter with the same sign. The prime over
the summation sign indicates k’s¢k. In other words,
any forward scattering has been removed from H; and
incorporated in the one-electron kinetic energy. The
matrix element V, —z, for k’ and k lying in the vicinity
of the Fermi surface, will be assumed to be a function of
the magnitude of momentum transfer |k’ —k|. We have

Hyu=V,w-ilcwricmr~tenfoin)

FVa,brr CrtTernrtepifors), (4.3)
so that the set {/}={kk’}. Defining the order
parameter

A=V by, (4.4)
)
we have
[‘I’k,Ho] = [ekTg—%(A—f—A*)Tl —-‘%(A *A*)iTz]‘I’]c ) (4.5) .
or
K(0,0; H)) =[exrs—3(A+A%)11—5(A—A%)iry].  (4.6)
Similarly,
[(Ye,Hu]=Varr1s¥p. 4.7)
It follows that, for /=0,
\Ifo = \I/]c ) (4.8)
and, for /=0, k’><k,
\I’l = ‘I’k' ) (4.9)
Rl= Va,k_krT3. (410)

Note that R, is proportional to a real, unitary matrix.
This means, first of all, that K(0,0; H,) and K(J,l; Hy)
contain nothing proportional to 7s. In other words, &;
and A may be taken real. Thus,

K(0,0, Ho) = EkTs—ATl ,

K(l,l; H()) = GkrTg'—'ATl .

Secondly, K(0,0; Hs) and K(,l; H;) contain nothing
proportional to 73, and anything proportional to 74 is

simultaneously proportional to w. Let us assume the
form (for all /, including /=0)

K(l,l; H2)=W’T3+(1 —-Z)(AT1+th4). (412)

The parameter W’ is assumed real, but Z is not neces-
sarily so. Defining

(4.11)

a=[(fiw)2—AZ]V2, (4.13)
we have
Ri[fwrs—K (1 HY) 'R
= |V ii | 23 Z(Ar1+Hors) — (ew W' )75 T 'rs
= | Veos s '[(Za) = (eut W]
X[ Z(Ar1+howry)+ (e +W )75 ]
=)™ Va,oir | [ (e +W'+Za) ™!
X(Ar1+iwrs—ars)— (e +W'—Za)™?
X(Ari+Hhwrstars)]. (4.14)
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We assume that @ and Za lie in the same quadrant of
the complex plane as does w. (This will later be checked.)
Thus, replacing w by w17, is equivalent to replacing
a by a+in.. Replacing the sum over /, which is the
same as a sum over k', by the equivalent integration,
we get

K(0,0; Hz) =(27)3Qa) Y (AT1+hwrs—ars)

x[@ / B |V 0o | X e W+ (Za) )

—mi sgn(Za)1/d3k'| Vu,k_k,’126(€k'+W,+<ZOl)1)]
—(27)%Qa) Y (AT1+hwrstars)

x[@ [ BH |V s | e W — (Za) o)

+i sgn(Za)1/d3k'I Vagi| 26(ek/+W’—-(Za)1):| .

(4.15)

The above integrals are insensitive to k, W/, and (Za),
as long as k lies in the vicinity of the Fermi surface, and
W’ and (Za); are much smaller in magnitude than the
Fermi energy. Thus we approximate the above inte-
grals by

W= —(2m)-% / k| Vail2e—t,  (4.16)
i (2m) 2! / k| Vo] 26(er)
=NQO) [ [Valw)!|%dp. (4.17)

-1

Here u (the cosine of the angle between k and k') is a
measure of the momentum transfer at the Fermi surface.
N(0), the density of one-electron states of a given spin
per unit energy at the Fermi surface, is the same as in
the BCS theory. We get

K(0,0; H»)
= —(2a)" YA+ HiwTs—ars)
X[W4i(h/27) sgn(Za)1]
+Q2a) YA+ fiwrstarTs)
X[ W —i(h/27) sgn(Za)1]

=Wrs—i(t/27a) (Ar1+Hiwrs) sgn(Za);. (4.18)

Comparing this with (4.12), we see that self-con-
sistency requires

w=w,
Z=1+1i(#/27a) sgn(Ze); .

(4.19)
(4.20)
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This last equation shows that (for 7! small) aZ lies in
the same quadrant of the complex plane as does @ and
w. Thus

7 =141(%/27c) sgnoy

=141(#/27a) sghw; . (4.21)
Equation (2.47) now becomes
det[ Zhwrs+ZA11—(ex+W)75]=0,  (4.22)
the roots of which are
+(ex+W)=Za=a+i(#/27) sgnay.  (4.23)
This gives immediately
a==x[|e+W|—i(h/27)], (4.24)
tiw={[ | ex+W | —i(#/2r) P+AZV2, (4.25)

Next we must solve Eq. (2.46) for the row-vector
coefficients 4,'(+) and A¢'(—). The amplitudes of the
coefficients are chosen to satisfy Eq. (2.52). From the
Ao"s, we can determine the matrix U. The phases of the
coefficients are chosen such that, when U is substituted
into Egs. (2.59), the resultant & is real. Finally, this
expression for b; is substituted into Eq. (4.4), resulting
in an integral equation for a self-consistent value of A.
In the limit of small 7~} the integral equation is just
the BCS gap equation. These results are consistent with
those of Ref. 10.

Finally, let us mention briefly what happens when
the impurity atoms are paramagnetic.!? We assume that
the spins of the impurity atoms are randomly oriented.
The pairing part of the Hamiltonian is still given by
(4.1), but the nonpairing part is

Hi=Y Vap-ilcetic+e_rifoe_in)

k. k'
42 Veow—rlewrios —cpfoin).
k., k!

(4.26)

The first line represents the nonmagnetic scattering due
to the electrostatic fields of the impurity atoms; the
second line represents the magnetic scattering due to
the magnetic moments of the impurity atoms. V, is
independent of the orientation of the impurity-atom
spins, but V3 is not. Denoting an average over all
possible random orientations by ( )s, we have

(Va'Vi)s=0, (4.27)
ViV s50. (4.28)

Equations (4.8) and (4.9) are still true, but Eq. (4.10)

is replaced by
Ri=Va w3+ Vorwa. (4.29)

The very different effect on superconductivity of para-
magnetic impurities as contrasted with nonmagnetic

12§, Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.
136, A1500 (1964).
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impurities results entirely from the difference between
Egs. (4.10) and (4.29), and in particular from the fact
that the second term on the right-hand side of (4.29) is
proportional to 74 rather than 73 Because of (4.27), it
is still possible to take b; and A real, and to assume that
K(0,0; H,) and K(I,l; H,) contain nothing proportional
to 7, and something proportional to wrs. However, it is
necessary to modify (4.12) by taking different coeffi-
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cients for the two terms A7y and #wr,. This leads to the
results discussed in detail in Ref. 12.
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Destruction of Superconductivity in Disordered Near-Monolayer Films*
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Severe decreases are observed in the superconducting transition temperatures of metallic films as they
are made thinner and more disordered. Explanations for these decreases in the transition temperature are
discussed. These include changes in the phonon spectrum, the effect of the metal-insulator boundary, size
quantization in small particles, the effect of an activated conduction mechanism in the normal state, and,

finally, the effect of order-parameter fluctuations.

I. INTRODUCTION

N recent years, there has been much speculation
about the properties of ultrathin film superconduc-
tors and, especially, the possibility of achieving higher
transition temperatures 7', than those presently
attained in such systems. Buckel and Hilsch! and
Zavaritsky? initially showed that soft metals deposited
at cryogenic temperatures had 7'’s significantly above
the bulk value in fairly thick films, which electron
diffraction work indicated were composed of small
metallic grains. With recent work®= on the effects of
softening the phonon spectrum, we seem to understand
why T'. goes up, and a discussion of this work will not
be presented here. Instead, we consider the problem of
the decreasing 7', found in the thinnest films. Through-
out the literature, there have been various reports that
T. decreases in the very thinnest metallic films.%7
In this paper, we present a systematic experimental
investigation of this problem along with the effect of

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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dielectric overlayers, and a discussion is given of the
physical mechanisms that can affect 7', in this regime.

As mentioned, the general substance of this paper is
the severe decrease in the 7', of superconducting films
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Fr1G. 1. T, versus thickness for Al film deposited on previously
deposited SiO. Lower graph shows sharply increased resistance at
small thicknesses.



